Sunday, August 15, 2021

For the beam shown in Fig., determine the value of EIδ at 2 m and 4 m from the left support.

For the beam shown in Fig., determine the value of EIδ at 2 m and 4 m from the left support.

 

861-simple-beam-given.gif

 

Solution 

ΣMR2=0ΣMR2=0

5R1=800+1200(1)

R1=400 N
 

ΣMR1=0

5R2+800=1200(4)

R2=800 N
 

M1=M4=0

M2=2R1800=2(400)800=0

M3=1R2=800 Nm
 

861-simple-beam-points.gif

 

For the deflection at point 2 (consider the span 1-2-4)

L1=2 m   ←   span 1 to 2

L2=3 m   ←   span 2 to 4
 

M1L1+2M2(L1+L2)+M4L2+6A1a¯1L1+6A2b¯2L2=6EI(h1L1+h4L2)

0+0+08002[3(22)22]+1200(1)3(3212)=6EI(h2+h3)

3200+3200=6EI(5h6)

6400=5EIh

h=1280EI
 

The positive sign indicates that points 1 and 4 are above point 2
δ2=1280EI  downward           answer

 

For the deflection at point 3 (consider the span 1-3-4)

L1=4 m   ←   span 1 to 3

L2=1 m   ←   span 3 to 4
 

M1L1+2M3(L1+L2)+M4L2+6A1a¯1L1+6A2b¯2L2=6EI(h1L1+h4L2)

0+2(800)(4+1)+08004[3(22)42]+0=6EI(h4+h1)

8000800=6EI(5h4)

7200=152EIh

h=960EI
 

The positive sign indicates that points 1 and 4 are above point 3
δ3=960EI  downward           answer

No comments:

Post a Comment