Tuesday, August 31, 2021

Interesting and disturbing trivia: In most countries the ratio of boys to girls is about \displaystyle{1.04}:{1}1.04:1, but in China it is \displaystyle{1.15}:{1}1.15:1.]

Interesting and disturbing trivia: In most countries the ratio of boys to girls is about \displaystyle{1.04}:{1}, but in China it is \displaystyle{1.15}:{1}

.] 


Solution

The probability of getting a boy is 

\displaystyle\frac{1.09}{{{1.09}+{1.00}}}={0.5215}

Let \displaystyle{X}= number of boys in the family.

Here,

\displaystyle{n}={6},
\displaystyle{p}={0.5215},
\displaystyle{q}={1}-{0.52153}={0.4785}

When \displaystyle{x}={3}:

\displaystyle{P}{\left({X}\right)} \displaystyle={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}} \displaystyle={{C}_{{3}}^{{6}}}{\left({0.5215}\right)}^{3}{\left({0.4785}\right)}^{3} \displaystyle={0.31077}

When \displaystyle{x}={4}:

\displaystyle{P}{\left({X}\right)} \displaystyle={{C}_{{4}}^{{6}}}{\left({0.5215}\right)}^{4}{\left({0.4785}\right)}^{2} \displaystyle={0.25402}

When \displaystyle{x}={5}:

\displaystyle{P}{\left({X}\right)} \displaystyle={{C}_{{5}}^{{6}}}{\left({0.5215}\right)}^{5}{\left({0.4785}\right)}^{1} \displaystyle={0.11074}

When \displaystyle{x}={6}:

\displaystyle{P}{\left({X}\right)} \displaystyle={{C}_{{6}}^{{6}}}{\left({0.5215}\right)}^{6}{\left({0.4785}\right)}^{0} \displaystyle={2.0115}\times{10}^{ -{{2}}}

So the probability of getting at least 3 boys is:

\displaystyle\text{Probability}={P}{\left({X}\ge{3}\right)}

\displaystyle={0.31077}+{0.25402}+ \displaystyle{0.11074}+ \displaystyle{2.0115}\times{10}^{ -{{2}}}

\displaystyle={0.69565}

NOTE: We could have calculated it like this:

\displaystyle{P}{\left({X}\ge{3}\right)} \displaystyle={1}-{\left({P}{\left({x}_{{0}}\right)}+{P}{\left({x}_{{1}}\right)}+{P}{\left({x}_{{2}}\right)}\right)}

No comments:

Post a Comment