Show that the momentum correction factor and energy correction correction factor for laminar flow through circular pipe are
43 and 2.0 respectively.
Solution:-
(i) Momentum correction factor or β
The velocity distribution through a circular pipe for laminar flow at any radius ‘r’ is given by,
u=14μ(−dPdx)(R2−r2)…………..(1)
Consider an elementary area dA in the form of a ring at the radius ‘r’ and width ‘dr’ then
dA=2πrdr
Rate of fluid flowing through the ring,
=dQ = Velocity× area of the ring element
=u×2πrdr
Momentum of the fluid through ring per second
=mass × velocity
=ρ×dQ×u
=ρ×2πr×u×u
=2πρu2rdr
Therefore the total actual momentum of the fluid per second across the section ∫R02πρu2rdr
Substituting the value of ‘u’ from equation (1),
=2πρ∫R0[14μ(−dPdx)(R2−r2)]2rdr
=2πρ[14μ(−dPdx)]2∫R0(R2−r2)2rdr
=2πρ[116μ2(dPdx)2]∫R0(R4+r4−2R2r2)rdr
=πρ8μ2(dPdx)2∫R0(R4r+r5−2R2r3)dr
=πρ8μ2(dPdx)2[R4r22+r66−2R2r44]R0
=πρ8μ2(dPdx)2[R62+R66−2R64]
=πρ8μ2(dPdx)2[6R6+2R6−6R612]
=πρ8μ2(dPdx)2×R66
=πρ48μ2(dPdx)2×R6……………(2)
Momentum of the fluid per second based on average velocity
=mass of fluidsecond×Average Velocity
=ρAu¯¯¯×u¯¯¯=ρAu¯¯¯2
Where A = area of cross-section = πR2
Average velocity = u¯¯¯=Umax2
=12×14μ(−dPdx)R2
=18μ(−dPdx)R2
Therefore Momentum per second based on average velocity,
=ρ×πR2[18μ(−dPdx)R2]2
=ρ×πR2×164μ2(−dPdx)2R4
=ρπ(−dPdx)2R664μ2.......................(3)
β=πρ48μ2(−dPdx)2×R6ρπ64μ2(−dPdx)2R6
∴β=6448=43
2) Energy correction factor ‘a’
Kinetic energy of the fluid flowing through the elementary ring of radius ‘r’ and of width ‘dr’ per second,
=12×mass×u2
=12×ρdQ×u2
=12×ρ×(u×2πrdr)×u2
=12ρ×2πru3dr
=πρru3dr
Therefore total actual kinetic energy of flow per second
=∫R0πρru3dr
=∫R0πρr[14μ(−dPdx)(R2−r2)]3dr
=πρ[14μ(−dPdx)]3∫R0(R2−r2)3rdr
=πρ[164μ3(−dPdx)3]∫R0(R6−r6−3R4r2+3R2r4)rdr
=πρ[164μ3(−dPdx)3]∫R0(rR6−r7−3R4r3+3R2r5)dr
=πρ[164μ3(−dPdx)3][R6r22−r88−3R4r44+3R2r66]R0
=πρ64μ3(−dPdx)3[R82−R88−3R84+3R86]
=πρ64μ3(−dPdx)3[R8(12−3−18+1224)]
=πρ64μ3(−dPdx)3(R88)………….(4)
Kinetic energy of floor based on average velocity
=12×mass×u¯¯¯2
=12×ρAu¯¯¯×u¯¯¯2
=12×ρ×A×u¯¯¯3
Substituting the value of A=πR2
And u¯¯¯=18μ(−dPdx)R2
Kinetic energy of the flow per second
=12×ρ×πR2×[18μ(−dPdx)R2]3
=12×ρ×πR2×164×8μ3(−dPdx)3R6
=ρ×π128×8μ3(−dPdx)3R8……………(5)
∴a=equation(4)equation(5)
a=πρ64μ3(−dPdx)3(R88)ρ×π128×8μ3(−dPdx)3R8
=128×864×8
a=2.0
No comments:
Post a Comment