Saturday, December 27, 2025

A simply supported beam of length 8 m carries a central point load of 20 kN. Find: Reactions at supports Maximum bending moment

 A simply supported beam of length 8 m carries a central point load of 20 kN. Find:

  1. Reactions at supports

  2. Maximum bending moment

Solution:

Step 1: Determine reactions

  • For a central point load PP on a simply supported beam of length LL:

RA=RB=P2R_A = R_B = \frac{P}{2} RA=RB=202=10 kNR_A = R_B = \frac{20}{2} = 10 \text{ kN}

Step 2: Maximum bending moment

  • Maximum moment occurs at midspan (under the load):

Mmax=PL4M_{\text{max}} = \frac{P L}{4} Mmax=20×84=40 kNmM_{\text{max}} = \frac{20 \times 8}{4} = 40 \text{ kNm}

✅ Answer:

  • Reactions: RA = RB = 10 kN

  • Max bending moment: 40 kNm

No comments:

Post a Comment