Tuesday, August 17, 2021

A die is tossed \displaystyle{3}3 times. What is the probability of (a) No fives turning up? (b) \displaystyle{1}1 five? (c) \displaystyle{3}3 fives?

A die is tossed \displaystyle{3} times. What is the probability of

(a) No fives turning up?

(b) \displaystyle{1} five?

(c) \displaystyle{3} fives?

Solution

 This is a binomial distribution because there are only 

\displaystyle{2} possible outcomes (we get a \displaystyle{5} or we don't).

Now, \displaystyle{n}={3} for each part. Let \displaystyle{X}= number of fives appearing.

(a) Here, x = 0.

\displaystyle{P}{\left({X}={0}\right)} \displaystyle={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}} \displaystyle={{C}_{{0}}^{{3}}}{\left(\frac{1}{{6}}\right)}^{0}{\left(\frac{5}{{6}}\right)}^{3} \displaystyle=\frac{125}{{216}} \displaystyle={0.5787}

(b) Here, x = 1.

\displaystyle{P}{\left({X}={1}\right)} \displaystyle={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}} \displaystyle={{C}_{{1}}^{{3}}}{\left(\frac{1}{{6}}\right)}^{1}{\left(\frac{5}{{6}}\right)}^{2} \displaystyle=\frac{75}{{216}} \displaystyle={0.34722}

(c) Here, x = 3.

\displaystyle{P}{\left({X}={3}\right)}={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}} \displaystyle={{C}_{{3}}^{{3}}}{\left(\frac{1}{{6}}\right)}^{3}{\left(\frac{5}{{6}}\right)}^{0} \displaystyle=\frac{1}{{216}} \displaystyle={4.6296}\times{10}^{ -{{3}}}

No comments:

Post a Comment