Tuesday, August 17, 2021

Hospital records show that of patients suffering from a certain disease, \displaystyle{75}\%75% die of it. What is the probability that of \displaystyle{6}6 randomly selected patients, \displaystyle{4}4 will recover?

 Hospital records show that of patients suffering from a certain disease, 

\displaystyle{75}\% die of it. What is the probability that of \displaystyle{6} randomly selected patients, \displaystyle{4} will recover?


Solution

This is a binomial distribution because there are only 2 outcomes (the patient dies, or does not).

Let X = number who recover.

Here, \displaystyle{n}={6} and \displaystyle{x}={4}. Let \displaystyle{p}={0.25} (success, that is, they live), \displaystyle{q}={0.75} (failure, i.e. they die).

The probability that \displaystyle{4} will recover:

\displaystyle{P}{\left({X}\right)} \displaystyle={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}} \displaystyle={{C}_{{4}}^{{6}}}{\left({0.25}\right)}^{4}{\left({0.75}\right)}^{2} \displaystyle={15}\times{2.1973}\times{10}^{ -{{3}}} \displaystyle={0.0329595}

Histogram of this distribution:

We could calculate all the probabilities involved and we would get:

\displaystyle{X}\displaystyle\text{Probability}
\displaystyle{0}\displaystyle{0.17798}
\displaystyle{1}\displaystyle{0.35596}
\displaystyle{2}\displaystyle{0.29663}
\displaystyle{3}\displaystyle{0.13184}
\displaystyle{4}\displaystyle{3.2959}\times{10}^{ -{{2}}}
\displaystyle{5}\displaystyle{4.3945}\times{10}^{ -{{3}}}
\displaystyle{6}\displaystyle{2.4414}\times{10}^{ -{{4}}}

The histogram is as follows:

0.17800.35610.29720.13230.0340.00450.00026XProbabilityOpen image in a new page

Histogram of the binomial distribution

It means that out of the \displaystyle{6} patients chosen, the probability that:

  • None of them will recover is \displaystyle{0.17798},
  • One will recover is \displaystyle{0.35596}, and
  • All \displaystyle{6} will recover is extremely small.

No comments:

Post a Comment