A gas is flowing through a horizontal pipe at a temperature of 4∘C. The diameter of the pipe is 8cm and its section 1-1 in this pipe, the pressure is 30.3N/cm2(gauge). The diameter of pipe changes from 8cm to 4cm at the section 2-2, where the pressure is 20.3N/cm2 (gauge). Find the velocities of gas at these sections assuming an isothermal process. Take R=287.14Nm/kgK, and atmospheric pressure =10N/m2.
Solution:
Given:
For section 1-1
Temperature, t1=4∘C
Absolute temp, T1=4+273=277K
D1=8cm=0.08m
Therefore, Area, A1=π4×D21=π4×(0.08)2=0.005026m2
Pressure, P1=30.3N/cm2 (gauge)
P1=30.3+10=40.3N/cm2 (absolute)
P1=40.3×104N/m2
For section 2-2,
D2=4cm=0.04m
Area, A2=π4×D22=π4×(0.04)2=0.001256m2
Pressure, P2=20.3N/cm2 (gauge)
P2=20.3+10=30.3N/cm2 (absolute)
P2=30.3×104N/m2
Gas constant, R=287.14N−m/Kg−K
Ratio of specific heat, K=1.4
Applying the continuity equation at sections 1 and 2, we get
ρ1A1V1=ρ2V2A2
V2V1=ρ1A1ρ2A2
V2V1=ρ1×0.005026ρ2×0.001256
V2V1=ρ1ρ2×4.................(1)
For isothermal process,
P1ρ1=P2ρ2
ρ1ρ2=P1P2
ρ1ρ2=40.3×10430.3×104
ρ1ρ2=1.33
Substitute the value of (ρ1ρ2) in equation (1),
V2V1=1.33×4
V2=5.32V1....................(2)
Applying Bernoulli's equation at section 1-1 and 2-2 for isothermal process,
P1ρ1glogeP1+V212g+z1=P2ρ2glogeP2+V222g+z2
z1=z2 (for horizontal pipe)
∴P1ρ1glogeP1+V212g=P2ρ2glogeP2+V222g
∴P1ρ1glogeP1−P2ρ2glogeP2=V222g−V212g
But for isothermal process, P1ρ1=P2ρ2
P1ρ1glogeP1−P1ρ1glogeP2=V222g−V212g
P1ρ1g[logeP1P2]=(5.32V1)22g−V212g
P1ρ1g[loge1.33]=27.30V212g
P1ρ1=27.302×0.285v21=27.30v212g................(3)P1ρ1=27.302×0.285v12=27.30v122g................(3)
Now, Pρ=RT from the equation of state.
Forsection (1-1):-
P1ρ1=RT1=287.14×277
P1ρ1=79537.4
Substituting the value in equation 3, we get
79537.4=47.894V21
V21=79537.447.894
V1=79537.447.894−−−−−−−√
V1=40.75m/s
Therefore, equation (2),
V2=5.32×V=5.32×40.75
V2=216.79m/s
No comments:
Post a Comment