Saturday, August 14, 2021

A gas is flowing through a horizontal pipe at a temperature of 4∘C4∘C. The diameter of the pipe is 8cm and its section 1-1 in this pipe, the pressure is 30.3N/cm230.3N/cm2(gauge). The diameter of pipe changes from 8cm to 4cm at the section 2-2, where the pressure is 20.3N/cm220.3N/cm2 (gauge). Find the velocities of gas at these sections assuming an isothermal process. Take R=287.14Nm/kgKR=287.14Nm/kgK, and atmospheric pressure =10N/m2=10N/m2.

A gas is flowing through a horizontal pipe at a temperature of 4C. The diameter of the pipe is 8cm and its section 1-1 in this pipe, the pressure is 30.3N/cm2(gauge). The diameter of pipe changes from 8cm to 4cm at the section 2-2, where the pressure is 20.3N/cm2 (gauge). Find the velocities of gas at these sections assuming an isothermal process. Take R=287.14Nm/kgK, and atmospheric pressure =10N/m2.

enter image description here

Solution: 

Given:

For section 1-1

Temperature, t1=4C

Absolute temp, T1=4+273=277K

D1=8cm=0.08m

Therefore, Area, A1=π4×D12=π4×(0.08)2=0.005026m2


Pressure, P1=30.3N/cm2 (gauge)

P1=30.3+10=40.3N/cm2 (absolute)

P1=40.3×104N/m2


For section 2-2,

D2=4cm=0.04m

Area, A2=π4×D22=π4×(0.04)2=0.001256m2

Pressure, P2=20.3N/cm2 (gauge)

P2=20.3+10=30.3N/cm2 (absolute)

P2=30.3×104N/m2

Gas constant, R=287.14Nm/KgK

Ratio of specific heat, K=1.4


Applying the continuity equation at sections 1 and 2, we get

ρ1A1V1=ρ2V2A2

V2V1=ρ1A1ρ2A2

V2V1=ρ1×0.005026ρ2×0.001256

V2V1=ρ1ρ2×4.................(1)


For isothermal process,

P1ρ1=P2ρ2

ρ1ρ2=P1P2

ρ1ρ2=40.3×10430.3×104

ρ1ρ2=1.33

Substitute the value of (ρ1ρ2) in equation (1),

V2V1=1.33×4

V2=5.32V1....................(2)


Applying Bernoulli's equation at section 1-1 and 2-2 for isothermal process,

P1ρ1glogeP1+V122g+z1=P2ρ2glogeP2+V222g+z2

z1=z2 (for horizontal pipe)

P1ρ1glogeP1+V122g=P2ρ2glogeP2+V222g

P1ρ1glogeP1P2ρ2glogeP2=V222gV122g

But for isothermal process, P1ρ1=P2ρ2

P1ρ1glogeP1P1ρ1glogeP2=V222gV122g

P1ρ1g[logeP1P2]=(5.32V1)22gV122g

P1ρ1g[loge1.33]=27.30V122g

P1ρ1=27.302×0.285v12=27.30v122g................(3)


Now, Pρ=RT from the equation of state.

Forsection (1-1):-

P1ρ1=RT1=287.14×277

P1ρ1=79537.4


Substituting the value in equation 3, we get

79537.4=47.894V12

V12=79537.447.894

V1=79537.447.894

V1=40.75m/s


Therefore, equation (2),

V2=5.32×V=5.32×40.75

No comments:

Post a Comment