Derive Momentum thickness and energy thickness for the given velocity profile.
uV=2(yδ)−(yδ)2
Solution:-
Given:
Velocity Distribution, uV=2(yδ)−(yδ)2
(i) Displacement thickness δ∗∗ is given by
Momentum thickness θ is given by,
θ=∫δ0uV[1−uV]dy
θ=∫δ0[2(yδ)−(yδ)2][1−2(yδ)−(yδ)2]dy
θ=∫δ0[2yδ−y2δ2−4y2δ2+2y3δ3+2y3δ3−y4δ4]dy
θ=∫δ0[2yδ−5y2δ2+4y3δ3−y4δ4]dy
θ=[2y22δ−5y33δ2+4y44δ3−y55δ4]δ0
θ=[2δ22δ−5δ33δ2+4δ44δ3−δ55δ4]
θ=[δ−5δ3+δ−δ5]
θ=[15δ−25δ+15δ−3δ15]
θ=[2δ15] - Momentum thickness
(ii) Energy thickness δ∗∗ is given by
δ∗∗=∫δ0uV[1−u2V2]dy
δ∗∗=∫δ0[2(yδ)−(yδ)2][1−(2(yδ)−(yδ)2)2]dy
δ∗∗=∫δ0[2yδ−y2δ2][1−4y2δ2+4y3δ3−y4δ4]dy
δ∗∗=∫δ0[2yδ−y2δ2−8y3δ3+4y4δ4−2y5δ5+y6δ6+8y4δ4−4y5δ5]dy
δ∗∗=∫δ0[2yδ−y2δ2−8y3δ3+12y4δ4−6y5δ5+y6δ6]dy
δ∗∗=[2y22δ−y33δ2−8y44δ3+12y55δ4−6y66δ5+y77δ6]δ0
δ∗∗=[2δ22δ−δ33δ2−8δ44δ3+12δ55δ4−6δ66δ5+δ77δ6]
δ∗∗=[δ−δ3−2δ+12δ5−δ+δ7]
δ∗∗=[−δ3−2δ+12δ5+δ7]
δ∗∗=[−210δ−35δ+252δ+15δ105]
δ∗∗=[22δ105] - energy thickness
No comments:
Post a Comment