Saturday, August 14, 2021

Derive Momentum thickness and energy thickness for the given velocity profile. uV=2(yδ)−(yδ)2uV=2(yδ)−(yδ)2

 Derive Momentum thickness and energy thickness for the given velocity profile.

uV=2(yδ)(yδ)2


Solution:-

 Given:

Velocity Distribution, uV=2(yδ)(yδ)2

(i) Displacement thickness δ is given by

Momentum thickness θ is given by,

θ=0δuV[1uV]dy

θ=0δ[2(yδ)(yδ)2][12(yδ)(yδ)2]dy

θ=0δ[2yδy2δ24y2δ2+2y3δ3+2y3δ3y4δ4]dy

θ=0δ[2yδ5y2δ2+4y3δ3y4δ4]dy

θ=[2y22δ5y33δ2+4y44δ3y55δ4]0δ

θ=[2δ22δ5δ33δ2+4δ44δ3δ55δ4]

θ=[δ5δ3+δδ5]

θ=[15δ25δ+15δ3δ15]

θ=[2δ15] - Momentum thickness


(ii) Energy thickness δ is given by

δ=0δuV[1u2V2]dy

δ=0δ[2(yδ)(yδ)2][1(2(yδ)(yδ)2)2]dy

δ=0δ[2yδy2δ2][14y2δ2+4y3δ3y4δ4]dy

δ=0δ[2yδy2δ28y3δ3+4y4δ42y5δ5+y6δ6

        +8y4δ44y5δ5]dy

δ=0δ[2yδy2δ28y3δ3+12y4δ46y5δ5+y6δ6]dy

δ=[2y22δy33δ28y44δ3+12y55δ46y66δ5+y77δ6]0δ

δ=[2δ22δδ33δ28δ44δ3+12δ55δ46δ66δ5+δ77δ6]

δ=[δδ32δ+12δ5δ+δ7]

δ=[δ32δ+12δ5+δ7]

δ=[210δ35δ+252δ+15δ105]

δ=[22δ105] - energy thickness

No comments:

Post a Comment