Sunday, August 15, 2021

A simple beam supports a concentrated load placed anywhere on the span, as shown in Fig. P-659. Measuring x from A, show that the maximum deflection occurs at x = √[(L2 - b2)/3].


A simple beam supports a concentrated load placed anywhere on the span, as shown in Fig. P-659. Measuring x from A, show that the maximum deflection occurs at x = √[(L2 - b2)/3].
 

Simple Beam with Load P at any Point



Solution                              


 ΣMR2=0ΣMR2=0

LR1=Pb

R1=Pb/L
 

ΣMR1=0

LR2=Pa

R2=Pa/L
 

yx=PbL

y=PbLx
 

tA/D=1EI(AreaAD)X¯A

tA/D=1EI[12xy(23x]

tA/D=1EI[13x2y]

tA/D=1EI[13x2(PbLx)]

tA/D=1EIPb3Lx3
 

tC/D=1EI(AreaCD)X¯C

tC/D=1EI[16(Lx)2(Pby)+12(Lx)2y16Pb3]

tC/D=1EI[16(Lx)2(PbPbLx)+12(Lx)2(PbLx)16Pb3]

tC/D=1EI[16Pb(Lx)2(1xL)+12Pb(Lx)2(xL)16Pb3]

tC/D=1EI[Pb6L(Lx)3+Pb2L(Lx)2xPb36]
 

From the figure:
tA/D=tC/D

1EIPb3Lx3=1EI[Pb6L(Lx)3+Pb2L(Lx)2xPb36]

Pb3Lx3=Pb6L(Lx)3+Pb2L(Lx)2xPb36

2x3L=(Lx)3L+3(Lx)2xLb2

2x3=(Lx)3+3(Lx)2xLb2

2x3=(L33L2x+3Lx2x3)+3(L22Lx+x2)xLb2

2x3=L33L2x+3Lx2x3+3L2x6Lx2+3x3Lb2

0=L33Lx2Lb2

0=L23x2b2

3x2=L2b2

x=L2b23   (okay!)

No comments:

Post a Comment