A simple beam supports a concentrated load placed anywhere on the span, as shown in Fig. P-659. Measuring x from A, show that the maximum deflection occurs at x = √[(L2 - b2)/3].
Solution
ΣMR2=0ΣMR2=0
LR1=Pb
R1=Pb/L
ΣMR1=0
LR2=Pa
R2=Pa/L
yx=PbL
y=PbLx
tA/D=1EI(AreaAD)X¯A
tA/D=1EI[12xy(23x]
tA/D=1EI[13x2y]
tA/D=1EI[13x2(PbLx)]
tA/D=1EIPb3Lx3
tC/D=1EI(AreaCD)X¯C
tC/D=1EI[16(L−x)2(Pb−y)+12(L−x)2y−16Pb3]
tC/D=1EI[16(L−x)2(Pb−PbLx)+12(L−x)2(PbLx)−16Pb3]
tC/D=1EI[16Pb(L−x)2(1−xL)+12Pb(L−x)2(xL)−16Pb3]
tC/D=1EI[Pb6L(L−x)3+Pb2L(L−x)2x−Pb36]
From the figure:
tA/D=tC/D
1EIPb3Lx3=1EI[Pb6L(L−x)3+Pb2L(L−x)2x−Pb36]
Pb3Lx3=Pb6L(L−x)3+Pb2L(L−x)2x−Pb36
2x3L=(L−x)3L+3(L−x)2xL−b2
2x3=(L−x)3+3(L−x)2x−Lb2
2x3=(L3−3L2x+3Lx2−x3)+3(L2−2Lx+x2)x−Lb2
2x3=L3−3L2x+3Lx2−x3+3L2x−6Lx2+3x3−Lb2
0=L3−3Lx2−Lb2
0=L2−3x2−b2
3x2=L2−b2
x=L2−b23−−−−−−−√ (okay!)
No comments:
Post a Comment