Sunday, August 15, 2021

Find the value of EIδ under each concentrated load of the beam shown in Fig. P-655.

 Find the value of EIδ under each concentrated load of the beam shown in Fig..

 


Simple Beam with Two Concentrated Loads

ΣMR2=0ΣMR2=0

8R1=200(5)+400(1)

R1=175 lb
 

ΣMR1=0

8R2=200(3)+400(7)

R2=425 lb
 

655-moment-diagram-by-parts-elastic-curve.jpg

 

yC17=14008

yC1=1225 lb
 

yC24=10005

yC2=800 lb
 

yB3=14008

yB=525 lb
 

EItD/A=(AreaAD)X¯D

EItD/A=12(8)(1400)(83)12(5)(1000)(53)12(1)(400)(13)

EItD/A=10700 lbft3
 

EItC/A=(AreaAC)X¯C

EItC/A=12(7)(yC1)(73)12(4)(yC2)(43)

EItC/A=12(7)(1225)(73)12(4)(800)(43)

EItC/A=472256 lbft3
 

EItB/A=(AreaAB)X¯B

EItC/A=12(3)(yB)(1)

EItC/A=12(3)(525)(1)

EItC/A=15752 lbft3
 

By ratio and proportion:
BE¯3=CF¯7=tD/A8

BE¯=38tD/A=38(10700)=80252

CF¯=78tD/A=78(10700)=187252
 

Deflections:
δB=BE¯tB/A

EIδB=EIBE¯EItB/A=8025215752

EIδB=3225 lbft3            → answer
 

δC=CF¯tC/A

EIδC=EICF¯EItC/A=187252472256

EIδC=44753=1491.67 lbft3           answer


No comments:

Post a Comment