Find the value of EIδ under each concentrated load of the beam shown in Fig..
ΣMR2=0ΣMR2=0
R1=200(5)+400(1)
R1=175 lb
ΣMR1=0
8R2=200(3)+400(7)
R2=425 lb
yC17=14008
yC1=1225 lb
yC24=−10005
yC2=−800 lb
yB3=14008
yB=525 lb
EItD/A=(AreaAD)X¯D
EItD/A=12(8)(1400)(83)−12(5)(1000)(53)−12(1)(400)(13)
EItD/A=10700 lb⋅ft3
EItC/A=(AreaAC)X¯C
EItC/A=12(7)(yC1)(73)−12(4)(yC2)(43)
EItC/A=12(7)(1225)(73)−12(4)(800)(43)
EItC/A=472256 lb⋅ft3
EItB/A=(AreaAB)X¯B
EItC/A=12(3)(yB)(1)
EItC/A=12(3)(525)(1)
EItC/A=15752 lb⋅ft3
By ratio and proportion:
BE¯3=CF¯7=tD/A8
BE¯=38tD/A=38(10700)=80252
CF¯=78tD/A=78(10700)=187252
Deflections:
δB=BE¯−tB/A
EIδB=EIBE¯−EItB/A=80252−15752
EIδB=3225 lb⋅ft3 → answer
δC=CF¯−tC/A
EIδC=EICF¯−EItC/A=187252−472256
EIδC=44753=1491.67 lb⋅ft3EIδC=44753=1491.67 lb⋅ft3 answer
No comments:
Post a Comment