Saturday, December 27, 2025

Square footing, B = 2 m, sandy soil, γ = 18 kN/m³, φ = 30°, Df = 1.5 m, c = 0. Find ultimate bearing capacity.

 Square footing, B = 2 m, sandy soil, γ = 18 kN/m³, φ = 30°, Df = 1.5 m, c = 0. Find ultimate bearing capacity.

Solution:

qu=γDfNq+0.4γBNγq_u = \gamma Df N_q + 0.4 \gamma B N_\gamma
  • Nq18.4,Nγ22.4N_q \approx 18.4, N_\gamma \approx 22.4

qu=181.518.4+0.418222.4=858.7 kPaq_u = 18 \cdot 1.5 \cdot 18.4 + 0.4 \cdot 18 \cdot 2 \cdot 22.4 = 858.7 \text{ kPa}

Answer: 0.859 MPa

Slump = 90 mm. Determine workability and suitability for beams/columns/slabs.

 Slump = 90 mm. Determine workability and suitability for beams/columns/slabs.

Solution:

  • Slump 50–100 mm → Medium workability

  • Medium workability suitable for beams, columns, slabs

Answer: Medium workability; suitable for beams, columns, slabs

Target mean strength f c k = 20 fck​=20 MPa, water/cement ratio = 0.5, water content = 200 kg/m³. Find cement content.

 Target mean strength 

fck=20f_{ck} = 20 MPa, water/cement ratio = 0.5, water content = 200 kg/m³. Find cement content.

Solution:

Cement=Waterw/c=200/0.5=400 kg/m³Cement = \frac{Water}{w/c} = 200/0.5 = 400 \text{ kg/m³}

Answer: 400 kg/m³

A simply supported beam, 6 m, carries central point load 12 kN. Find reactions and max bending moment.

 A simply supported beam, 6 m, carries central point load 12 kN. Find reactions and max bending moment.

Solution:

  • Reactions: RA=RB=12/2=6 kNR_A = R_B = 12/2 = 6 \text{ kN}

  • Max bending moment: Mmax=PL/4=126/4=18 kNmM_{max} = PL/4 = 12 \cdot 6/4 = 18 \text{ kNm}

Answer: RA = RB = 6 kN, Mmax = 18 kNm

A simply supported beam, 8 m long, carries a uniformly distributed load of 10 kN/m over the entire span. Find: Reactions at supports Maximum bending moment

 A simply supported beam, 8 m long, carries a uniformly distributed load of 10 kN/m over the entire span. Find:

  1. Reactions at supports

  2. Maximum bending moment

Solution:

  • Reaction at supports: RA=RB=wL2=1082=40 kNR_A = R_B = \frac{wL}{2} = \frac{10 \cdot 8}{2} = 40 \text{ kN}

  • Max bending moment (midspan): Mmax=wL28=10828=80 kNmM_{max} = \frac{wL^2}{8} = \frac{10 \cdot 8^2}{8} = 80 \text{ kNm}

Answer:

  • Reactions: 40 kN each

  • Max bending moment: 80 kNm

slope distance D = 150 m measured at a slope of 12°. Find the horizontal distance.

 slope distance D = 150 m measured at a slope of 12°. Find the horizontal distance.

Solution:

Step 1: Horizontal distance formula

H=DcosθH = D \cos \theta H=150cos12°1500.9781146.7mH = 150 \cos 12° \approx 150 \cdot 0.9781 \approx 146.7 m

✅ Answer: Horizontal distance = 146.7 m

A rectangular channel width = 3 m, slope S = 0.001 S=0.001, and Manning’s roughness n = 0.015 n=0.015. Find the discharge (Q) when water depth is 1.2 m.

 A rectangular channel width = 3 m, slope 

S=0.001S = 0.001, and Manning’s roughness n=0.015n = 0.015. Find the discharge (Q) when water depth is 1.2 m.

Solution:

Step 1: Manning’s equation

Q=1nAR2/3S1/2Q = \frac{1}{n} A R^{2/3} S^{1/2}

Where:

  • A=bh=31.2=3.6m2A = b \cdot h = 3 \cdot 1.2 = 3.6 m²

  • Wetted perimeter P=b+2h=3+2(1.2)=5.4mP = b + 2h = 3 + 2(1.2) = 5.4 m

  • Hydraulic radius R=A/P=3.6/5.40.667mR = A / P = 3.6 / 5.4 \approx 0.667 m

Step 2: Substitute into Manning

Q=10.0153.6(0.667)2/3(0.001)1/2Q = \frac{1}{0.015} \cdot 3.6 \cdot (0.667)^{2/3} \cdot (0.001)^{1/2}

Step 3: Compute

  • R2/3=0.6672/30.763R^{2/3} = 0.667^{2/3} \approx 0.763

  • S1/2=0.0010.03162S^{1/2} = \sqrt{0.001} \approx 0.03162

Q=66.673.60.7630.03162Q = 66.67 \cdot 3.6 \cdot 0.763 \cdot 0.03162 Q5.8 m³/sQ \approx 5.8 \text{ m³/s}

✅ Answer: Discharge = 5.8 m³/s

A clay layer of thickness 4 m is subjected to a uniform load of 100 kPa. Coefficient of volume compressibility m v = 0.0004 m²/kN mv​=0.0004 m²/kN. Find the immediate consolidation settlement.

 A clay layer of thickness 4 m is subjected to a uniform load of 100 kPa. Coefficient of volume compressibility 

mv=0.0004 m²/kNm_v = 0.0004 \text{ m²/kN}. Find the immediate consolidation settlement.

Solution:

Step 1: Settlement formula

S=mvσHS = m_v \cdot \sigma \cdot H

Where:

  • SS = settlement

  • mvm_v = coefficient of volume compressibility

  • σ\sigma = applied pressure

  • HH = thickness of layer

Step 2: Substitute values

S=0.00041004=0.16 m=160 mmS = 0.0004 \cdot 100 \cdot 4 = 0.16 \text{ m} = 160 \text{ mm}

✅ Answer: Settlement = 160 mm

A concrete sample has slump = 80 mm. Determine the workability grade and suitability for: Beams, columns, and slabs

 A concrete sample has slump = 80 mm. Determine the workability grade and suitability for:

  • Beams, columns, and slabs

Solution:

Step 1: Identify slump grade (IS 456:2000)

Slump (mm)Workability
0–25Very low
25–50Low
50–100Medium
100–175High
  • Given slump = 80 mm → Medium workability

Step 2: Suitability

  • Medium workability concrete is suitable for beams, columns, and slabs that are reinforced and have normal compaction.

✅ Answer: Medium workability; suitable for beams, columns, slabs.

A simply supported beam of length 8 m carries a central point load of 20 kN. Find: Reactions at supports Maximum bending moment

 A simply supported beam of length 8 m carries a central point load of 20 kN. Find:

  1. Reactions at supports

  2. Maximum bending moment

Solution:

Step 1: Determine reactions

  • For a central point load PP on a simply supported beam of length LL:

RA=RB=P2R_A = R_B = \frac{P}{2} RA=RB=202=10 kNR_A = R_B = \frac{20}{2} = 10 \text{ kN}

Step 2: Maximum bending moment

  • Maximum moment occurs at midspan (under the load):

Mmax=PL4M_{\text{max}} = \frac{P L}{4} Mmax=20×84=40 kNmM_{\text{max}} = \frac{20 \times 8}{4} = 40 \text{ kNm}

✅ Answer:

  • Reactions: RA = RB = 10 kN

  • Max bending moment: 40 kNm

Water flows through a 100 m long, 200 mm diameter pipe with a head loss of 4 m. Find the flow rate (Q) using Darcy-Weisbach equation: h f = f L D v 2 2 g hf​=fDL​2gv2​ Assume friction factor f = 0.02 f=0.02, g = 9.81 m / s 2 g=9.81m/s2.

 Problem:

Water flows through a 100 m long, 200 mm diameter pipe with a head loss of 4 m. Find the flow rate (Q) using Darcy-Weisbach equation:

hf=fLDv22gh_f = f \frac{L}{D} \frac{v^2}{2g}

Assume friction factor f=0.02f = 0.02, g=9.81m/s2g = 9.81 m/s^2.

Solution:

  1. Velocity (v):

v=2ghfDfL=29.8140.20.02100v = \sqrt{\frac{2 g h_f D}{f L}} = \sqrt{\frac{2 \cdot 9.81 \cdot 4 \cdot 0.2}{0.02 \cdot 100}} v=15.6962=7.8482.8m/sv = \sqrt{\frac{15.696}{2}} = \sqrt{7.848} \approx 2.8 m/s
  1. Flow rate (Q):

Q=Av=πD24v=π0.2242.8Q = A \cdot v = \pi \frac{D^2}{4} \cdot v = \pi \frac{0.2^2}{4} \cdot 2.8 Q=0.03142.80.088m3/s88L/sQ = 0.0314 \cdot 2.8 \approx 0.088 m^3/s \approx 88 L/s

Answer: Flow rate = 0.088 m³/s (88 L/s)

Label for blog: Fluid Mechanics / Pipe Flow

Thursday, October 20, 2022

Calculate the Short Break Procedure from table.1 Table 1 Time period 3 mins VehicleCount 07:00 – 07:05 45 07:05 – 07:10 55 07:10 – 07:15 30 07:15 – 07:20 65 07:20 – 07:25 40 07:25 – 07:30 50

Q :                                                                                                                                     

(a)    Calculate the Short Break Procedure from table.1

Table 1

Time period

3 mins VehicleCount

07:00 – 07:05

45

07:05 – 07:10

55

07:10 – 07:15

30

07:15 – 07:20

65

07:20 – 07:25

40

07:25 – 07:30

50

                                                     

Answer:

 

Time period

3 mins VehicleCount (v)

Count adjustment (f)

Adjusted mins count (Va)

07:00 – 07:05

 45

5/3

5/3 × 45 = 75

07:05 – 07:10

55

5/3

5/3 × 55 = 91.67

07:10 – 07:15

60

5/3

5/3 × 60 = 100

07:15 – 07:20

65

5/3

5/3 × 65 = 10.33

07:20 – 07:25

40

5/3

5/3 ×40  =  67

07:25 – 07:30

 50

5/3

5/3 × 50 = 83.33