Sunday, August 15, 2021

Determine the midspan value of EIδ for the beam shown in Fig.

657-conjugate-beam-method.gif

Determine the midspan value of EIδ for the beam shown in Fig. 
 







solution

657-conjugate-moment-diagram-by-parts.gifFrom the load diagram
ΣMR1=0

6R2=12(4)(600)[13(4)]

R2=266.67 N
 

y1=6004

y=150 N/m
 

From the moment diagram
a=3R2=3(266.67)

a=800 Nm
 

b=12(1)(y)[13(1)]

b=16y=16(150)

b=25 Nm
 

From the conjugate beam
ΣMF1=0

6F2+14(4)(1600)[15(4)]=12(6)(1600)[13(6)]

F2=1386.67 Nm2
 

657-conjugate-beam-loaded.gif

 

Mmidspan=12(3a)[13(3)]14(1b)[15(1)]3F2

Mmidspan=12(3)(800)[13(3)]14(1)(25)[15(1)]3(1386.67)

Mmidspan=2961.25 Nm3
 

Thus, the deflection at the midspan is
EIδm=Mmidspan

EIδm=2961.25 Nm3

EIδm=2961.25 Nm3   below the neutral axis           answer

No comments:

Post a Comment