Sunday, August 15, 2021

Find the value of EIδ under each concentrated load of the beam shown in Fig

655-conjugate-beam-method.gif

 Find the value of EIδ under each concentrated load of the beam shown in Fig. 

 

Solution 




ΣMD=0ΣMD=0

8R1=200(5)+400(1)

R1=175 lb
 

ΣMA=0

8R2=200(3)+400(7)

R2=425 lb
 

655-conjugate-moment-diagram-by-parts.gif

 

By ratio and proportion
yC1=21255

yC=425 lbft
 

From the conjugate beam
ΣMD=0

8F1+12(4)(1600)[1+23(4)]=12(3)(525)[5+13(3)]+12(5)(2125)[23(5)]

F1=1337.5 lbft2
 

655-conjugate-beam-m-ei-diagram.gif

 

ΣMA=0

8F2+12(4)(1600)[13(4)]=12(3)(525)[23(3)]+12(5)(2125)[3+13(5)]

F2=1562.5 lbft2
 

Consider the section to the left of B in conjugate beam
MB=12(3)(525)[13(3)]3F1

MB=787.53(1337.5)

MB=3225 lbft3
 

Thus, the deflection at B is
EI δB=MB

EI δB=3225 lbft3           answer
 

Consider the section to the right of C in conjugate beam
MC=12(1)(yC)[13(1)]1F2

MC=12(1)(425)[13(1)]1(1562.5)

MC=1491.67 lbft3
 

Thus, the deflection at C is
EI δC=MC

EI δC=1491.67 lbft3

EI δC=1491.67 lbft3   downward           answer

No comments:

Post a Comment