Find the value of EIδ under each concentrated load of the beam shown in Fig.
Solution
ΣMD=0ΣMD=0
8R1=200(5)+400(1)
R1=175 lb
ΣMA=0
8R2=200(3)+400(7)
R2=425 lb
By ratio and proportion
yC1=21255
yC=425 lb⋅ft
From the conjugate beam
ΣMD=0
8F1+12(4)(1600)[1+23(4)]=12(3)(525)[5+13(3)]+12(5)(2125)[23(5)]
F1=1337.5 lb⋅ft2
ΣMA=0
8F2+12(4)(1600)[13(4)]=12(3)(525)[23(3)]+12(5)(2125)[3+13(5)]
F2=1562.5 lb⋅ft2
Consider the section to the left of B in conjugate beam
MB=12(3)(525)[13(3)]−3F1
MB=787.5−3(1337.5)
MB=−3225 lb⋅ft3
Thus, the deflection at B is
EI δB=MB
EI δB=3225 lb⋅ft3 answer
Consider the section to the right of C in conjugate beam
MC=12(1)(yC)[13(1)]−1F2
MC=12(1)(425)[13(1)]−1(1562.5)
MC=−1491.67 lb⋅ft3
Thus, the deflection at C is
EI δC=MC
EI δC=−1491.67 lb⋅ft3
EI δC=1491.67 lb⋅ft3 downward answer
No comments:
Post a Comment